Scenario Trees and Policy Selection for Multistage Stochastic Programming Using Machine Learning
نویسندگان
چکیده
I the context of multistage stochastic optimization problems, we propose a hybrid strategy for generalizing to nonlinear decision rules, using machine learning, a finite data set of constrained vector-valued recourse decisions optimized using scenario-tree techniques from multistage stochastic programming. The decision rules are based on a statistical model inferred from a given scenario-tree solution and are selected by out-of-sample simulation given the true problem. Because the learned rules depend on the given scenario tree, we repeat the procedure for a large number of randomly generated scenario trees and then select the best solution (policy) found for the true problem. The scheme leads to an ex post selection of the scenario tree itself. Numerical tests evaluate the dependence of the approach on the machine learning aspects and show cases where one can obtain near-optimal solutions, starting with a “weak” scenario-tree generator that randomizes the branching structure of the trees.
منابع مشابه
Machine Learning Solution Methods for Multistage Stochastic Programming
This thesis investigates the following question: Can supervised learning techniques be successfully used for finding better solutions to multistage stochastic programs? A similar question had already been posed in the context of reinforcement learning, and had led to algorithmic and conceptual advances in the field of approximate value function methods over the years (Lagoudakis and Parr, 2003;...
متن کاملBounds for Multistage Stochastic Programs Using Supervised Learning Strategies
We propose a generic method for obtaining quickly good upper bounds on the minimal value of a multistage stochastic program. The method is based on the simulation of a feasible decision policy, synthesized by a strategy relying on any scenario tree approximation from stochastic programming and on supervised learning techniques from machine learning.
متن کاملA Multi-Stage Single-Machine Replacement Strategy Using Stochastic Dynamic Programming
In this paper, the single machine replacement problem is being modeled into the frameworks of stochastic dynamic programming and control threshold policy, where some properties of the optimal values of the control thresholds are derived. Using these properties and by minimizing a cost function, the optimal values of two control thresholds for the time between productions of two successive nonco...
متن کاملTwo-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect
This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...
متن کاملIntegrated Inspection Planning and Preventive Maintenance for a Markov Deteriorating System Under Scenario-based Demand Uncertainty
In this paper, a single-product, single-machine system under Markovian deterioration of machine condition and demand uncertainty is studied. The objective is to find the optimal intervals for inspection and preventive maintenance activities in a condition-based maintenance planning with discrete monitoring framework. At first, a stochastic dynamic programming model whose state variable is the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- INFORMS Journal on Computing
دوره 25 شماره
صفحات -
تاریخ انتشار 2013